A Morse-theoretical proof of the Hartogs extension theorem

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Morse-theoretical Proof of the Hartogs Extension Theorem

100 years ago exactly, in 1906, Hartogs published a celebrated extension phenomenon (birth of Several Complex Variables), whose global counterpart was understood later: holomorphic functions in a connected neighborhood V(∂Ω) of a connected boundary ∂Ω b C (n > 2) do extend holomorphically and uniquely to the domain Ω. Martinelli in the early 1940’s and Ehrenpreis in 1961 obtained a rigorous pro...

متن کامل

A ∂-theoretical Proof of Hartogs’ Extension Theorem on Stein Spaces with Isolated Singularities

Let X be a connected normal Stein space of pure dimension d ≥ 2 with isolated singularities only. By solving a weighted ∂-equation with compact support on a desingularization of X , we derive Hartogs’ Extension Theorem on X by the ∂-idea due to Ehrenpreis.

متن کامل

- THEORETICAL PROOF OF HARTOGS ’ EXTENSION THEOREM ON ( n − 1 ) - COMPLETE COMPLEX SPACES

Let X be a connected normal complex space of dimension n ≥ 2 which is (n − 1)-complete, and let π : M → X be a resolution of singularities. By use of Takegoshi’s generalization of the Grauert-Riemenschneider vanishing theorem, we deduce H cpt(M,O) = 0, which in turn implies Hartogs’ extension theorem on X by the ∂-technique of Ehrenpreis.

متن کامل

Ja n 20 09 A ∂ - THEORETICAL PROOF OF HARTOGS ’ EXTENSION THEOREM ON ( n − 1 ) - COMPLETE COMPLEX SPACES

Let X be a connected normal complex space of dimension n ≥ 2 which is (n − 1)-complete, and let π : M → X be a resolution of singularities. By use of Takegoshi’s generalization of the Grauert-Riemenschneider vanishing theorem, we deduce H cpt(M,O) = 0, which in turn implies Hartogs’ extension theorem on X by the ∂-technique of Ehrenpreis.

متن کامل

Multidimensional extension of the Morse-Hedlund theorem

A celebrated result of Morse and Hedlund, stated in 1938, asserts that a sequence x over a finite alphabet is ultimately periodic if and only if, for some n, the number of different factors of length n appearing in x is less than n+1. Attempts to extend this fundamental result, for example, to higher dimensions, have been considered during the last fifteen years. Let d ≥ 2. A legitimate extensi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometric Analysis

سال: 2007

ISSN: 1050-6926,1559-002X

DOI: 10.1007/bf02922095